-
Python Programming
19 Lessons-
StartIntroduction to python
-
StartVariables & data types
-
StartList & working with list
-
StartTuple
-
StartSet
-
StartDictionary
-
StartOperators
-
StartDicision Control Statements
-
StartLoop Control Statements
-
StartFunctions & Modules
-
StartLambda, Filter, Map, Reduce
-
StartObject oriented programming
-
StartAbstraction
-
StartInheritance
-
StartPolymorphism
-
StartFile handling
-
StartException handling
-
StartRegular expression
-
StartWeb scraping
-
-
NumPy
12 Lessons-
StartIntroduction to NumPy
-
StartNumPy Arrays
-
StartNumPy Attributes
-
StartIndexing & Slicing
-
StartArray Operations - (Arithmetic, Aggregation, broadcasting)
-
StartNumPy Functions
-
StartMathematical functions
-
StartLinear Algebra
-
StartWorking with multiple dimensions
-
StartReshaping Arrays
-
StartConcatenation
-
StartSpiliting
-
-
Pandas
11 Lessons-
StartIntroduction to Pandas
-
StartSeries & data frames
-
StartData types & missing values
-
StartIndexing & selecting data
-
StartIndexing methods - Ioc, iloc
-
StartBoolean Indexing
-
StartSelection based on conditions
-
StartData manipulation
-
StartHanding missing data
-
StartGrouping & aggregation
-
StartMerging & joining data frames
-
-
Matplotlib
13 Lessons-
StartIntroduction to matplotlib
-
StartInstalling matplotlib
-
StartBasic plotting
-
StartLine plots
-
StartScatter plots
-
StartBar plots
-
StartHistograms
-
StartBox plots
-
StartAdding titles, labels & legends
-
StartChanging colors
-
StartLine & marker styles
-
StartAdjusting axis limits and ticks
-
StartAdding annotations
-
-
Seaborn
13 Lessons-
StartIntroduction to seaborn
-
StartInstallation & setup
-
StartVisualizing relationships between variables
-
StartCorrelation plots
-
StartScatterplot matrices
-
StartKernel density estimation (KDE)
-
StartVisualizing distributions
-
StartConfidence intervals
-
StartScatter plots
-
StartLine plots
-
StartBox plots
-
StartViolin plots
-
StartKDE plots
-
-
Supervised ML
14 Lessons-
StartIntroduction to machine learning
-
StartML fundamentals & EDA
-
StartML modeling flow
-
StartTypes of ML
-
StartOutliers & skewness
-
StartLinear regression
-
StartLogistic regression
-
StartDecision tree & random forest
-
StartEnsemble techniques
-
StartK nearest neighbors
-
StartKNN algorithm
-
StartWorking with KNN
-
StartSupport vector machine (SVM)
-
StartNaïve Bayes
-
-
Unsupervised ML
9 Lessons-
StartIntroduction to clustering
-
StartK-means clustering
-
StartK-means clustering algorithms
-
Startchoosing the optimum k value (Elbow Method)
-
StartIntroduction to Hierarchical clustering
-
StartDendrogram
-
StartTypes of Hierarchical clustering
-
StartPrinciple component analysis (PCA)
-
StartDimensionality reduction
-